What’s on the mind of air traffic controllers and algebraic
geometers?

Abstract
(Subtitled: an introduction to jet spaces.) To any given commutative ring one can associate a
topological object known as an affine scheme. The space in question is assigned the Zariski topology,
which is in some ways pathological - it is not even Hausdorff. Yet still, jet spaces are a tool which allow
us to study analytic behavior, like differential equations, on a scheme. How do we take derivatives and
think about e-neighborhoods outside of the context of metric spaces? In this talk, we find out.

1 Affine Schemes

The objects of consideration are affine schemes. Given a ring R, we can construct a locally ringed space
Spec R which contains two pieces of information:
1. a topological space X. The set is {p | p C R is a prime ideal} and we give the set the Zariski topology.
We can define the Zariski topology via a basis of open sets, the collection B = {U;}, where we let
Ur={p| f€R,f¢&p} be a distinguished open.

Example 1.1. Let R = C[z,y]. The maximal ideals of R are (x — a,y — b) for a,b € C. One can show
that the prime ideals are those that are maximal, (0), and those of the form (F') for F' € R an irreducible
polynomial. As a space, we have

x b @-2y-3)

i.e., we should think of both (z — 2,y — 3) and (F') as points in our space. If we let f = 22 4+ y* — 4, then

Ur={p|[f¢&p}
=X\{p[fep}
=X\ (/)

since f is irreducible, hence prime.
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Open sets are large; they are essentially complements of zero sets. O
Theorem 1.2. For R = Clz1,...,24]/(f1,..., fs), one has X = {x € C?| fi(x) = 0 for all i}. O
Example 1.3. Let R = C[z,y]/(zy). The topological space X is

X

O

2. a sheaf of rings Ox. A presheaf F is a contravariant functor Open(X) — Rings; i.e., to each open
U C X we get aring F(U), and if U C V, then we get a ring homomorphism F (V) — F(U). We call
elements in F(U) sections.

Example 1.4. The collection of holomorphic functions on a complex manifold X forms a presheaf, since to
each open U C X we get a ring of holomorphic functions F(U) = {f : U — C | f is holomorphic}, and if
U C V, then we have an assignment F (V) — F(U) given by restriction; a holomorphic function on a large
set V is holomorphic on an open subset U of V. O

To go from a presheaf to a sheaf, we impose the gluing condition: given an open cover U; of X with
sections s; € F(U;), if si|U-mUj = 55|y qu.» then there exists a global section s such that s|; = s; for all 4.
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Example 1.5. Holomorphic functions form a sheaf as well, since holomorphic functions glue on open sets,
by the identity principle. O

For Spec R, the specific sheaf of rings is called the structure sheaf, and is defined by, for Uy a distinguished
open, Ox(Us) = Ry, the localization of R at f.

Example 1.6. For R = Clz,y]/(zy), we see that SpecR is X = + and Oy is defined via declaring
Ox (Uy) = Clz,yly/(xy)y- H



Notice that for any R, Ox(X) = Ox(U;) = Ry = R. Thus we have a correspondence between rings R
and affine schemes Spec R which has an inverse; given (X, Ox), Ox(X) recovers R.

Observe that if we have a map of topological spaces f : X — Y, then we get a pullback map of sheaves
Oy — f.Ox; ie., for every open subset Uy C Y, we can produce a map of rings, which is the map

Oy (Us) = [.0x(Us) = Ox(f~Us).

If we pullback all of Y, we get a map of rings Oy (Y) — f.Ox(Y) = Ox(f~'Y) = Ox(X). Thus if
Spec R = (X,0x) and Spec S = (Y, Oy ), then a map of sheaves Spec R — Spec S gives us a map of rings
Oy(Y)=5— 0Ox(X)=R.

Theorem 1.7. There is a contravariant equivalence of categories between AffSch and Rings. UJ

All schemes we will consider will be over C, in the sense that there exists a map X — Spec C. By above,
that gives a map C — Ox (X); i.e., Ox(X) is a C-algebra.

Corollary 1.8. There is a contravariant equivalence of categories between AffSche and Alg. ]

2 Functors of Points

Goal: we want to see why a scheme X is completely determined (up to isomorphism) by its functor of points,
Homgen(—, X) : Sch — Set.

e Why is this called a functor of points? Let’s see a simplifying example in Top. Let X be a topological
space. To see its honest-to-god points, observe that that is equivalent to determining all maps {*x} — X;
i.e., Homrop({*}, X). We can take points to mean something more general, though. We could ask
for the “interval-points” of X, which would be Hommop (7, X). We can and do ask for the loops in X,
Hommop (5!, X), ie., its S'-valued points, etc. Hence the name functor of points.

e Why should this determine X7 Again, think about Top. We use such functors all the time already
as homeomorphism invariants; i.e., we can tell when two spaces X and Y are different by seeing
that they have different fundamental groups 71(X) = Hommop (S, X)/ ~. If X and Y have the same
fundamental groups, we can move to higher homotopy groups m;(X) = Homrop (S*, X)/ ~. If we range
over all possible topological-space-valued points of X and Y, either we will find some homeomorphism
invariant, or, if we range over everything and find no differences, then X =2 Y.

Theorem 2.1 (Yoneda Lemma/Corollary). In a categoryC, A = B if and only if Home(—, A) = Home(—, B).
O

Therefore, the functor Homgen (—, X) determines X. If we plug a scheme Y into Homgen(—, X)), we say
it is a Y-valued point of X. If Y = Spec S, then we also say it is an S-valued point of X. Points are also
called test objects.



One may ask for the opposite consideration; given a functor, is it the functor of points for some object
X7 In other words, if F' is any functor, does there possibly exist an object X in some category C such that
F(-) 2 Home(—, X)? This is asking for the representability of the functor F. It is an interesting question
in general. For us, functors will be representable.

3 Jet Spaces/Arc Spaces

Spec R is a very algebraic construction. A jet space gives us a way to compute analytic information on
Spec R! How?

Definition 3.1. Let X be a scheme. Define the nth jet space of X, written J” X, to be the scheme whose
S-valued points are precisely the S[t]/t"*!-valued points of X. That is, J"X is the representing object of
the functor S — Homgcn (Spec S[t]/t" 1, X). In other words,

Homgen (Spec S, J" X) = Homgen (Spec S[t]/thrl, X) )

We also define the arc space of X, J*X, to be the scheme whose S-valued points are the S[t]-valued
points of X; i.e.,

Homgen (Spec S, J*°X) = Homgen (Spec STt], X).
O
Example 3.2 (The dumbest example). Given any X, J°X = X since S[t]/t* = S. Then apply Yoneda. [

Example 3.3 (A less illuminating example compared to what follows, just to see computation). Consider
the affine scheme X = Spec Clz,y]. What is J2X? Let S be a test C-algebra. By definition, J2X is defined
by being the scheme such that

Homgen (Spec S, J2X) =~ Homgch (Spe(:S[t]/LLg7 X) .
We compute:
Homgche (Specs[t]/tg, Spec C[x,y]) = Homalg,, (C[x, Y, S[ﬂ/t?))

What does an algebra map Clx,y] — S[t]/t look like? We must determine the image of x and y; they will
be

T > ag —|—a1t+a2t2
y = b + byt + bot?

for ag, ay,as, by, b1, by € S. Thus, to give a map Clx,y] — S[t]/t3 is the same as giving a map of C-algebras
Clao, a1, ag, by, by, ba] — S. Therefore

Homajg,, (C[Cﬂ,y]vs[t]/t3> = Homaig,, (Clag, a1,az,bo, b1, b2], S)
= Homgene (Spec S, Spec Clag, a1, az, bo, b1, ba]) .
Therefore, J2X = Spec Clag, a1, az, bg, b1, ba). O

Example 3.4 (A more illuminating example, to see analysis). Let Y = Spec C[xz,y]/(zy). What is J2Y?
Let S be a test C-algebra, and we know

Homgchg (Spec S, J2Y) = Homgchg (Specs[t]/t?,, Y)

o, () ).



Once again, an algebra map must send
xr— ag+ ait + a2t2
Yy bo + bt + bat?.
This time, we also require that the image of the product 2y be zero in S[t]/t>. Therefore we have
0= (ap + a1t + a2t2)(b0 + b1t + b2t2) = agbo + (apby + a1bo)t + (agbs + a1by + agbo)t2 + (td) ;
ie.,
agby = 0,

a0b1 + a1b0 = 0, and
agbs + a1by + asbg = 0.

Therefore, an algebra map Clz,y]/(zy) — S[t]/t? is equivalent to a map

Clag,a1,a2,by,b1,b

[a0, a1, 82, b0, by 2]/(aobma()bl + arbo, agbs + arby + asbe) 75

and therefore J2Y = Spec Clag, a1, az, by, b1, b2]/(aobo, aob1 + aibo, agbe + a1by + azby).
Why is this more enlightening? Because if we do a simple change of notation, we have

2y ~ Clz, 2", 2"y, v, y"
J Y:Spec [ vy.y ]/(xy,xy'+x'y,xy”+x’y’+x”y)'

One final change of variables allows us to write

2 >~ C[$a$17$/l7y7y/7y”}
JY & Spec /(xy, (l'y)/, (l’y)/l)
Thus the jet space is indeed giving us information about derivatives! In fact, in the previous example,
J*X = Clz, 2’ 2", y, 9, y"]. O

Theorem 3.5. If R = Clz,]/(f5), then J"Spec R = Clza, o', 70",y 2a™]/(fa, f5', f5", ... .,fg("))
and J*° Spec R 2 Clza, o, xa" ../ (fa, f5', f5", .. .). O

The main idea is that if X has an S-point, then an S[t]/¢"*!-point can be thought of as an infinitesimal
neighborhood of the point that captures information about tangent spaces (e.g., S[t]/t2, since we can think
of infinitesimals in calculus as a small h or ¢ such that €2 = 0). One can run this exact same machinery on
any representable functor F' to get the tangent space to a functor.
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