
What’s on the mind of air traffic controllers and algebraic

geometers?

Abstract

(Subtitled: an introduction to jet spaces.) To any given commutative ring one can associate a
topological object known as an affine scheme. The space in question is assigned the Zariski topology,
which is in some ways pathological - it is not even Hausdorff. Yet still, jet spaces are a tool which allow
us to study analytic behavior, like differential equations, on a scheme. How do we take derivatives and
think about ε-neighborhoods outside of the context of metric spaces? In this talk, we find out.

1 Affine Schemes

The objects of consideration are affine schemes. Given a ring R, we can construct a locally ringed space
SpecR which contains two pieces of information:

1. a topological space X. The set is {p | p ⊆ R is a prime ideal} and we give the set the Zariski topology.
We can define the Zariski topology via a basis of open sets, the collection B = {Uf}, where we let
Uf = {p | f ∈ R, f 6∈ p} be a distinguished open.

Example 1.1. Let R = C[x, y]. The maximal ideals of R are (x − a, y − b) for a, b ∈ C. One can show
that the prime ideals are those that are maximal, (0), and those of the form (F ) for F ∈ R an irreducible
polynomial. As a space, we have

a

b (x− 2, y − 3)X

(F )

i.e., we should think of both (x− 2, y − 3) and (F ) as points in our space. If we let f = x2 + y2 − 4, then

Uf = {p | f 6∈ p}
= X \ {p | f ∈ p}
= X \ (f),

since f is irreducible, hence prime.

a

bX

(f)
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Open sets are large; they are essentially complements of zero sets.

Theorem 1.2. For R = C[x1, . . . , xd]/(f1, . . . , fs), one has X = {x ∈ Cd | fi(x) = 0 for all i}.

Example 1.3. Let R = C[x, y]/(xy). The topological space X is

X

2. a sheaf of rings OX . A presheaf F is a contravariant functor Open(X) → Rings; i.e., to each open
U ⊆ X we get a ring F(U), and if U ⊆ V , then we get a ring homomorphism F(V )→ F(U). We call
elements in F(U) sections.

Example 1.4. The collection of holomorphic functions on a complex manifold X forms a presheaf, since to
each open U ⊆ X we get a ring of holomorphic functions F(U) = {f : U → C | f is holomorphic}, and if
U ⊆ V , then we have an assignment F(V )→ F(U) given by restriction; a holomorphic function on a large
set V is holomorphic on an open subset U of V .

To go from a presheaf to a sheaf, we impose the gluing condition: given an open cover Ui of X with
sections si ∈ F(Ui), if si|Ui∩Uj

= sj |Ui∩Uj
, then there exists a global section s such that s|Ui

= si for all i.

Example 1.5. Holomorphic functions form a sheaf as well, since holomorphic functions glue on open sets,
by the identity principle.

For SpecR, the specific sheaf of rings is called the structure sheaf, and is defined by, for Uf a distinguished
open, OX(Uf ) = Rf , the localization of R at f .

Example 1.6. For R = C[x, y]/(xy), we see that SpecR is X = + and OX is defined via declaring
OX(Uf ) = C[x, y]f/(xy)f .
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Notice that for any R, OX(X) = OX(U1) = R1 = R. Thus we have a correspondence between rings R
and affine schemes SpecR which has an inverse; given (X,OX), OX(X) recovers R.

Observe that if we have a map of topological spaces f : X → Y , then we get a pullback map of sheaves
OY → f∗OX ; i.e., for every open subset U2 ⊆ Y , we can produce a map of rings, which is the map
OY (U2)→ f∗OX(U2) = OX(f−1U2).

f−1U2

f−−−−−−−−−−−−−−−−−−−−−−→ U2

If we pullback all of Y , we get a map of rings OY (Y ) → f∗OX(Y ) = OX(f−1Y ) = OX(X). Thus if
SpecR = (X,OX) and SpecS = (Y,OY ), then a map of sheaves SpecR → SpecS gives us a map of rings
OY (Y ) = S → OX(X) = R.

Theorem 1.7. There is a contravariant equivalence of categories between AffSch and Rings.

All schemes we will consider will be over C, in the sense that there exists a map X → Spec C. By above,
that gives a map C→ OX(X); i.e., OX(X) is a C-algebra.

Corollary 1.8. There is a contravariant equivalence of categories between AffSchC and AlgC.

2 Functors of Points

Goal: we want to see why a scheme X is completely determined (up to isomorphism) by its functor of points,
HomSch(−, X) : Sch→ Set.
• Why is this called a functor of points? Let’s see a simplifying example in Top. Let X be a topological

space. To see its honest-to-god points, observe that that is equivalent to determining all maps {∗} → X;
i.e., HomTop({∗}, X). We can take points to mean something more general, though. We could ask
for the “interval-points” of X, which would be HomTop(I,X). We can and do ask for the loops in X,
HomTop(S1, X), i.e., its S1-valued points, etc. Hence the name functor of points.

• Why should this determine X? Again, think about Top. We use such functors all the time already
as homeomorphism invariants; i.e., we can tell when two spaces X and Y are different by seeing
that they have different fundamental groups π1(X) = HomTop(S1, X)/ ∼. If X and Y have the same
fundamental groups, we can move to higher homotopy groups πi(X) = HomTop(Si, X)/ ∼. If we range
over all possible topological-space-valued points of X and Y , either we will find some homeomorphism
invariant, or, if we range over everything and find no differences, then X ∼= Y .

Theorem 2.1 (Yoneda Lemma/Corollary). In a category C, A ∼= B if and only if HomC(−, A) ∼= HomC(−, B).

Therefore, the functor HomSch(−, X) determines X. If we plug a scheme Y into HomSch(−, X), we say
it is a Y -valued point of X. If Y = SpecS, then we also say it is an S-valued point of X. Points are also
called test objects.
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One may ask for the opposite consideration; given a functor, is it the functor of points for some object
X? In other words, if F is any functor, does there possibly exist an object X in some category C such that
F (−) ∼= HomC(−, X)? This is asking for the representability of the functor F . It is an interesting question
in general. For us, functors will be representable.

3 Jet Spaces/Arc Spaces

SpecR is a very algebraic construction. A jet space gives us a way to compute analytic information on
SpecR! How?

Definition 3.1. Let X be a scheme. Define the nth jet space of X, written JnX, to be the scheme whose
S-valued points are precisely the S[t]/tn+1-valued points of X. That is, JnX is the representing object of
the functor S 7→ HomSch(SpecS[t]/tn+1, X). In other words,

HomSch(SpecS, JnX) ∼= HomSch

(
SpecS[t]�tn+1, X

)
.

We also define the arc space of X, J∞X, to be the scheme whose S-valued points are the SJtK-valued
points of X; i.e.,

HomSch(SpecS, J∞X) ∼= HomSch(SpecSJtK, X).

Example 3.2 (The dumbest example). Given any X, J0X ∼= X, since S[t]/t1 ∼= S. Then apply Yoneda.

Example 3.3 (A less illuminating example compared to what follows, just to see computation). Consider
the affine scheme X = Spec C[x, y]. What is J2X? Let S be a test C-algebra. By definition, J2X is defined
by being the scheme such that

HomSch(SpecS, J2X) ∼= HomSch

(
SpecS[t]�t3, X

)
.

We compute:

HomSchC

(
SpecS[t]�t3,Spec C[x, y]

)
∼= HomAlgC

(
C[x, y], S[t]�t3

)
What does an algebra map C[x, y]→ S[t]/t3 look like? We must determine the image of x and y; they will
be

x 7→ a0 + a1t+ a2t
2

y 7→ b0 + b1t+ b2t
2

for a0, a1, a2, b0, b1, b2 ∈ S. Thus, to give a map C[x, y]→ S[t]/t3 is the same as giving a map of C-algebras
C[a0, a1, a2, b0, b1, b2]→ S. Therefore

HomAlgC

(
C[x, y], S[t]�t3

)
∼= HomAlgC

(C[a0, a1, a2, b0, b1, b2], S)

∼= HomSchC
(SpecS,Spec C[a0, a1, a2, b0, b1, b2]) .

Therefore, J2X ∼= Spec C[a0, a1, a2, b0, b1, b2].

Example 3.4 (A more illuminating example, to see analysis). Let Y = Spec C[x, y]/(xy). What is J2Y ?
Let S be a test C-algebra, and we know

HomSchC

(
SpecS, J2Y

) ∼= HomSchC

(
SpecS[t]�t3, Y

)
∼= HomAlgC

(
C[x, y]�(xy),

S[t]�t3
)
.
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Once again, an algebra map must send

x 7→ a0 + a1t+ a2t
2

y 7→ b0 + b1t+ b2t
2.

This time, we also require that the image of the product xy be zero in S[t]/t3. Therefore we have

0 = (a0 + a1t+ a2t
2)(b0 + b1t+ b2t

2) = a0b0 + (a0b1 + a1b0)t+ (a0b2 + a1b1 + a2b0)t2 +
(
t3
)

;

i.e.,

a0b0 = 0,

a0b1 + a1b0 = 0, and

a0b2 + a1b1 + a2b0 = 0.

Therefore, an algebra map C[x, y]/(xy)→ S[t]/t3 is equivalent to a map

C[a0, a1, a2, b0, b1, b2]�(a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0)→ S,

and therefore J2Y ∼= Spec C[a0, a1, a2, b0, b1, b2]/(a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0).
Why is this more enlightening? Because if we do a simple change of notation, we have

J2Y ∼= Spec C[x, x′, x′′, y, y′, y′′]�(xy, xy′ + x′y, xy′′ + x′y′ + x′′y).

One final change of variables allows us to write

J2Y ∼= Spec C[x, x′, x′′, y, y′, y′′]�(xy, (xy)′, (xy)′′).

Thus the jet space is indeed giving us information about derivatives! In fact, in the previous example,
J2X ∼= C[x, x′, x′′, y, y′, y′′].

Theorem 3.5. If R = C[xα]/(fβ), then Jn SpecR ∼= C[xα, xα
′, xα

′′, . . . , xα
(n)]/(fβ , fβ

′, fβ
′′, . . . . , fβ

(n))
and J∞ SpecR ∼= C[xα, xα

′, xα
′′, . . .]/(fβ , fβ

′, fβ
′′, . . .).

The main idea is that if X has an S-point, then an S[t]/tn+1-point can be thought of as an infinitesimal
neighborhood of the point that captures information about tangent spaces (e.g., S[t]/t2, since we can think
of infinitesimals in calculus as a small h or ε such that ε2 = 0). One can run this exact same machinery on
any representable functor F to get the tangent space to a functor.
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