What's on the mind of air traffic controllers and algebraic geometers?

Abstract

(Subtitled: an introduction to jet spaces.) To any given commutative ring one can associate a topological object known as an affine scheme. The space in question is assigned the Zariski topology, which is in some ways pathological - it is not even Hausdorff. Yet still, jet spaces are a tool which allow us to study analytic behavior, like differential equations, on a scheme. How do we take derivatives and think about ε -neighborhoods outside of the context of metric spaces? In this talk, we find out.

1 Affine Schemes

The objects of consideration are affine schemes. Given a ring R, we can construct a locally ringed space Spec R which contains two pieces of information:

1. a topological space X. The set is $\{\mathfrak{p} \mid \mathfrak{p} \subseteq R \text{ is a prime ideal}\}$ and we give the set the Zariski topology. We can define the Zariski topology via a basis of open sets, the collection $\mathcal{B} = \{U_f\}$, where we let $U_f = \{\mathfrak{p} \mid f \in R, f \notin \mathfrak{p}\}$ be a distinguished open.

Example 1.1. Let $R = \mathbf{C}[x, y]$. The maximal ideals of R are (x - a, y - b) for $a, b \in \mathbf{C}$. One can show that the prime ideals are those that are maximal, (0), and those of the form (F) for $F \in R$ an irreducible polynomial. As a space, we have

i.e., we should think of both (x-2, y-3) and (F) as points in our space. If we let $f = x^2 + y^2 - 4$, then

$$U_f = \{ \mathfrak{p} \mid f \notin \mathfrak{p} \}$$
$$= X \setminus \{ \mathfrak{p} \mid f \in \mathfrak{p} \}$$
$$= X \setminus (f),$$

since f is irreducible, hence prime.

Open sets are large; they are essentially complements of zero sets.

Theorem 1.2. For $R = \mathbf{C}[x_1, ..., x_d]/(f_1, ..., f_s)$, one has $X = \{x \in \mathbf{C}^d \mid f_i(x) = 0 \text{ for all } i\}$.

Example 1.3. Let $R = \mathbf{C}[x, y]/(xy)$. The topological space X is

2. a sheaf of rings \mathcal{O}_X . A presheaf \mathcal{F} is a contravariant functor $\operatorname{Open}(X) \to \operatorname{Rings}$; i.e., to each open $U \subseteq X$ we get a ring $\mathcal{F}(U)$, and if $U \subseteq V$, then we get a ring homomorphism $\mathcal{F}(V) \to \mathcal{F}(U)$. We call elements in $\mathcal{F}(U)$ sections.

Example 1.4. The collection of holomorphic functions on a complex manifold X forms a presheaf, since to each open $U \subseteq X$ we get a ring of holomorphic functions $\mathcal{F}(U) = \{f : U \to \mathbb{C} \mid f \text{ is holomorphic}\}$, and if $U \subseteq V$, then we have an assignment $\mathcal{F}(V) \to \mathcal{F}(U)$ given by restriction; a holomorphic function on a large set V is holomorphic on an open subset U of V.

To go from a presheaf to a sheaf, we impose the gluing condition: given an open cover U_i of X with sections $s_i \in \mathcal{F}(U_i)$, if $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$, then there exists a global section s such that $s|_{U_i} = s_i$ for all i.

Example 1.5. Holomorphic functions form a sheaf as well, since holomorphic functions glue on open sets, by the identity principle. \Box

For Spec R, the specific sheaf of rings is called the structure sheaf, and is defined by, for U_f a distinguished open, $\mathcal{O}_X(U_f) = R_f$, the localization of R at f.

Example 1.6. For $R = \mathbb{C}[x, y]/(xy)$, we see that Spec R is X = + and \mathcal{O}_X is defined via declaring $\mathcal{O}_X(U_f) = \mathbb{C}[x, y]_f/(xy)_f$.

Notice that for any R, $\mathcal{O}_X(X) = \mathcal{O}_X(U_1) = R_1 = R$. Thus we have a correspondence between rings R and affine schemes Spec R which has an inverse; given (X, \mathcal{O}_X) , $\mathcal{O}_X(X)$ recovers R.

Observe that if we have a map of topological spaces $f: X \to Y$, then we get a pullback map of sheaves $\mathcal{O}_Y \to f_*\mathcal{O}_X$; i.e., for every open subset $U_2 \subseteq Y$, we can produce a map of rings, which is the map $\mathcal{O}_Y(U_2) \to f_*\mathcal{O}_X(U_2) = \mathcal{O}_X(f^{-1}U_2)$.

If we pullback all of Y, we get a map of rings $\mathcal{O}_Y(Y) \to f_*\mathcal{O}_X(Y) = \mathcal{O}_X(f^{-1}Y) = \mathcal{O}_X(X)$. Thus if Spec $R = (X, \mathcal{O}_X)$ and Spec $S = (Y, \mathcal{O}_Y)$, then a map of sheaves Spec $R \to$ Spec S gives us a map of rings $\mathcal{O}_Y(Y) = S \to \mathcal{O}_X(X) = R$.

Theorem 1.7. There is a contravariant equivalence of categories between AffSch and Rings.

All schemes we will consider will be over \mathbf{C} , in the sense that there exists a map $X \to \operatorname{Spec} \mathbf{C}$. By above, that gives a map $\mathbf{C} \to \mathcal{O}_X(X)$; i.e., $\mathcal{O}_X(X)$ is a \mathbf{C} -algebra.

Corollary 1.8. There is a contravariant equivalence of categories between $\operatorname{AffSch}_{\mathbf{C}}$ and $\operatorname{Alg}_{\mathbf{C}}$.

2 Functors of Points

Goal: we want to see why a scheme X is completely determined (up to isomorphism) by its functor of points, Hom_{Sch}(-, X): Sch \rightarrow Set.

- Why is this called a functor of points? Let's see a simplifying example in **Top**. Let X be a topological space. To see its honest-to-god points, observe that that is equivalent to determining all maps $\{*\} \to X$; i.e., $\operatorname{Hom}_{\mathbf{Top}}(\{*\}, X)$. We can take points to mean something more general, though. We could ask for the "interval-points" of X, which would be $\operatorname{Hom}_{\mathbf{Top}}(I, X)$. We can and do ask for the loops in X, $\operatorname{Hom}_{\mathbf{Top}}(S^1, X)$, i.e., its S^1 -valued points, etc. Hence the name functor of points.
- Why should this determine X? Again, think about **Top**. We use such functors all the time already as homeomorphism invariants; i.e., we can tell when two spaces X and Y are different by seeing that they have different fundamental groups $\pi_1(X) = \operatorname{Hom}_{\mathbf{Top}}(S^1, X) / \sim$. If X and Y have the same fundamental groups, we can move to higher homotopy groups $\pi_i(X) = \operatorname{Hom}_{\mathbf{Top}}(S^i, X) / \sim$. If we range over all possible topological-space-valued points of X and Y, either we will find some homeomorphism invariant, or, if we range over *everything* and find no differences, then $X \cong Y$.

Theorem 2.1 (Yoneda Lemma/Corollary). In a category C, $A \cong B$ if and only if $\operatorname{Hom}_{\mathcal{C}}(-, A) \cong \operatorname{Hom}_{\mathcal{C}}(-, B)$.

Therefore, the functor $\operatorname{Hom}_{\operatorname{Sch}}(-, X)$ determines X. If we plug a scheme Y into $\operatorname{Hom}_{\operatorname{Sch}}(-, X)$, we say it is a Y-valued point of X. If $Y = \operatorname{Spec} S$, then we also say it is an S-valued point of X. Points are also called test objects.

One may ask for the opposite consideration; given a functor, is it the functor of points for some object X? In other words, if F is any functor, does there possibly exist an object X in some category C such that $F(-) \cong \text{Hom}_{\mathcal{C}}(-, X)$? This is asking for the representability of the functor F. It is an interesting question in general. For us, functors will be representable.

3 Jet Spaces/Arc Spaces

Spec R is a very algebraic construction. A jet space gives us a way to compute analytic information on Spec R! How?

Definition 3.1. Let X be a scheme. Define the *n*th jet space of X, written $J^n X$, to be the scheme whose S-valued points are precisely the $S[t]/t^{n+1}$ -valued points of X. That is, $J^n X$ is the representing object of the functor $S \mapsto \operatorname{Hom}_{\mathbf{Sch}}(\operatorname{Spec} S[t]/t^{n+1}, X)$. In other words,

$$\operatorname{Hom}_{\operatorname{\mathbf{Sch}}}(\operatorname{Spec} S, J^n X) \cong \operatorname{Hom}_{\operatorname{\mathbf{Sch}}}\left(\operatorname{Spec}^{S[t]}_{t^{n+1}}, X\right).$$

We also define the **arc space of** X, $J^{\infty}X$, to be the scheme whose S-valued points are the S[[t]]-valued points of X; i.e.,

$$\operatorname{Hom}_{\operatorname{\mathbf{Sch}}}(\operatorname{Spec} S, J^{\infty}X) \cong \operatorname{Hom}_{\operatorname{\mathbf{Sch}}}(\operatorname{Spec} S[\![t]\!], X).$$

Example 3.2 (The dumbest example). Given any $X, J^0 X \cong X$, since $S[t]/t^1 \cong S$. Then apply Yoneda. \Box

Example 3.3 (A less illuminating example compared to what follows, just to see computation). Consider the affine scheme $X = \text{Spec } \mathbf{C}[x, y]$. What is J^2X ? Let S be a test C-algebra. By definition, J^2X is defined by being the scheme such that

$$\operatorname{Hom}_{\operatorname{\mathbf{Sch}}}(\operatorname{Spec} S, J^2X) \cong \operatorname{Hom}_{\operatorname{\mathbf{Sch}}}\left(\operatorname{Spec} S[t]_{t^3}, X\right).$$

We compute:

$$\operatorname{Hom}_{\mathbf{Sch}_{\mathbf{C}}}\left(\operatorname{Spec}^{S[t]}_{\ell_{1}^{*}3},\operatorname{Spec}^{\mathbf{C}}[x,y]\right)\cong\operatorname{Hom}_{\mathbf{Alg}_{\mathbf{C}}}\left(\mathbf{C}[x,y],\overset{S[t]}{\underset{\ell^{3}}{}}\right)$$

What does an algebra map $\mathbf{C}[x, y] \to S[t]/t^3$ look like? We must determine the image of x and y; they will be

$$x \mapsto a_0 + a_1 t + a_2 t^2$$
$$y \mapsto b_0 + b_1 t + b_2 t^2$$

for $a_0, a_1, a_2, b_0, b_1, b_2 \in S$. Thus, to give a map $\mathbf{C}[x, y] \to S[t]/t^3$ is the same as giving a map of **C**-algebras $\mathbf{C}[a_0, a_1, a_2, b_0, b_1, b_2] \to S$. Therefore

$$\operatorname{Hom}_{\operatorname{Alg}_{\mathbf{C}}}\left(\mathbf{C}[x,y], \overset{S[t]}{\underset{t^{3}}{}}\right) \cong \operatorname{Hom}_{\operatorname{Alg}_{\mathbf{C}}}\left(\mathbf{C}[a_{0},a_{1},a_{2},b_{0},b_{1},b_{2}],S\right)$$
$$\cong \operatorname{Hom}_{\operatorname{Sch}_{\mathbf{C}}}\left(\operatorname{Spec} S, \operatorname{Spec} \mathbf{C}[a_{0},a_{1},a_{2},b_{0},b_{1},b_{2}]\right).$$

Therefore, $J^2 X \cong \text{Spec } \mathbf{C}[a_0, a_1, a_2, b_0, b_1, b_2].$

Example 3.4 (A more illuminating example, to see analysis). Let $Y = \operatorname{Spec} \mathbf{C}[x, y]/(xy)$. What is J^2Y ? Let S be a test **C**-algebra, and we know

$$\begin{aligned} \operatorname{Hom}_{\mathbf{Sch}_{\mathbf{C}}}\left(\operatorname{Spec} S, J^{2}Y\right) &\cong \operatorname{Hom}_{\mathbf{Sch}_{\mathbf{C}}}\left(\operatorname{Spec}^{S[t]}_{\underline{\ell}^{3}}, Y\right) \\ &\cong \operatorname{Hom}_{\mathbf{Alg}_{\mathbf{C}}}\left(\mathbf{C}[x, y]_{\underline{\ell}(xy)}, S[t]_{\underline{\ell}^{3}}\right). \end{aligned}$$

Once again, an algebra map must send

$$x \mapsto a_0 + a_1 t + a_2 t^2$$
$$y \mapsto b_0 + b_1 t + b_2 t^2.$$

This time, we also require that the image of the product xy be zero in $S[t]/t^3$. Therefore we have

$$0 = (a_0 + a_1t + a_2t^2)(b_0 + b_1t + b_2t^2) = a_0b_0 + (a_0b_1 + a_1b_0)t + (a_0b_2 + a_1b_1 + a_2b_0)t^2 + (t^3);$$

i.e.,

$$a_0b_0 = 0,$$

 $a_0b_1 + a_1b_0 = 0,$ and
 $a_0b_2 + a_1b_1 + a_2b_0 = 0.$

Therefore, an algebra map $\mathbf{C}[x,y]/(xy) \to S[t]/t^3$ is equivalent to a map

$$\mathbf{C}[a_0, a_1, a_2, b_0, b_1, b_2]/(a_0b_0, a_0b_1 + a_1b_0, a_0b_2 + a_1b_1 + a_2b_0) \to S,$$

and therefore $J^2Y \cong \operatorname{Spec} \mathbf{C}[a_0, a_1, a_2, b_0, b_1, b_2]/(a_0b_0, a_0b_1 + a_1b_0, a_0b_2 + a_1b_1 + a_2b_0).$

Why is this more enlightening? Because if we do a simple change of notation, we have

$$J^{2}Y \cong \text{Spec}^{\mathbf{C}[x, x', x'', y, y', y'']}(xy, xy' + x'y, xy'' + x'y' + x''y)$$

One final change of variables allows us to write

$$J^2Y \cong \operatorname{Spec}^{\mathbf{C}[x, x', x'', y, y', y'']} (xy, (xy)', (xy)'')$$

Thus the jet space is indeed giving us information about derivatives! In fact, in the previous example, $J^2 X \cong \mathbb{C}[x, x', x'', y, y', y'']$.

Theorem 3.5. If $R = \mathbf{C}[x_{\alpha}]/(f_{\beta})$, then $J^n \operatorname{Spec} R \cong \mathbf{C}[x_{\alpha}, x_{\alpha}', x_{\alpha}'', \dots, x_{\alpha}^{(n)}]/(f_{\beta}, f_{\beta}', f_{\beta}'', \dots, f_{\beta}^{(n)})$ and $J^{\infty} \operatorname{Spec} R \cong \mathbf{C}[x_{\alpha}, x_{\alpha}', x_{\alpha}'', \dots]/(f_{\beta}, f_{\beta}', f_{\beta}'', \dots)$.

The main idea is that if X has an S-point, then an $S[t]/t^{n+1}$ -point can be thought of as an infinitesimal neighborhood of the point that captures information about tangent spaces (e.g., $S[t]/t^2$, since we can think of infinitesimals in calculus as a small h or ε such that $\varepsilon^2 = 0$). One can run this exact same machinery on any representable functor F to get the **tangent space to a functor**.